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1 Quaternions

Quaternions are a number system that extend the complex numbers to four–dimensions.
A general quaternion q is written as q = a+ bi + cj + dk where a, b, c, d ∈ R and i, j, and
k are the fundamental quaternion units. The space of quaternions is denoted by H after
William Hamilton who first described them in 1843.

Definition 1. A pure quaternion is a quaternion that can be written as bi + cj + dk for
real numbers b, c, and d. The space of pure quaternions is denoted by Ri + Rj + Rk.

Multiplication of quaternions is described by the multiplication table:

x 1 i j k

1 1 i j k

i i -1 k -j

j j -k -1 i

k k j -i -1

Table 1: Multiplication table for quaternions.

The following operations hold for quaternions q = a+ bi + cj + dk.

i. Addition: q1 + q2 = (a1 + a2) + (b1 + b2)i + (c1 + c2)j + (d1 + d2)k.

ii. Scalar multiplication: λq = λa+ λbi + λcj + λdk.

iii. Conjugation: q∗ = a− bi− cj− dk.

iv. Norm: |q| =
√
qq∗ =

√
a2 + b2 + c2 + d2.

v. Inverse: q−1 = q∗

|q|2 .

Using the multiplication rules given in Table 1 and the operations above, it can be
shown that the quaternions form a four–dimensional non-commutative algebra over the
real numbers.
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1.1 Rotations

1.1 Rotations

Quaternions can be used to generate rotations in three–dimensional space, R3, and so find
uses in many areas in applied mathematics.

Theorem 1. If t = cos θ2 + u sin θ
2 is an arbitrary unit quaternion where u ∈ Ri +Rj +Rk

is a unit vector, then conjugation by t rotates Ri + Rj + Rk through an angle θ about the
axis defined by u.

Proof. A proof is given in [1, page 14].

Corollary 1.1. The rotations of Ri + Rj + Rk form a group.

Proof. The identity rotation, is given by the rotation through 0 degrees around any axis,
namely 1 = cos 0 + u sin 0. The inverse of a rotation through axis u by an angle θ is given
by the rotation through axis u by angle −θ. If a rotation r1 is induced by conjugation
by the unit quaternion t1 = cos θ12 + u1 sin θ1

2 and r2 is induced by conjugation by t1 =

cos θ22 + u2 sin θ2
2 , then r = r1r2 is induced by q 7→ t2(t1qt

−1
1 )t−12 = (t2t1)q(t2t1)

−1, which

is conjugation by the unit quaternion t = t2t1 = cos θ2 + u sin θ
2 for some axis u and angle

θ.

The group of rotations that preserve orientation is denoted SO(3).

Remark 1. Representing conjugation by the map v 7→ tvt−1, we can see from Theorem
1 that the quaternions t and −t generate the same rotation of Ri + Rj + Rk. The pair t
and −t are called antipodal pairs of quaternions. The unit quaternions t form a 3–sphere
S3 ∼= Spin(3), so there is a 2–to–1 map S3 to SO(3).

2 Dual Numbers

Definition 2. Dual numbers are numbers of the form a+ εb where ε is a nilpotent number
with ε2 = 0. The space of dual numbers is denoted by D = R⊕ εR.

Dual numbers were first considered by Clifford in 1873 and further developed by Eduard
Study in the early 1900s. They are an extension of the real numbers that, unlike the
complex numbers, do not form a ring. We can represent a dual number by a matrix by
letting

ε =

(
0 1
0 0

)
, so then a+ εb =

(
a b
0 a

)
. (1)

Using this matrix representation, addition and multiplication of dual numbers simply re-
duces to the addition and multiplication of matrices of the form (1), which is associative
and commutative (c.f. complex numbers).

The following operation laws for dual numbers show that they form an algebra over the
real numbers, but do not form a field.
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3 Dual Quaternions

i. Addition: (a+ εb) + (c+ εd) = (a+ c) + ε(b+ d)

ii. Multiplication: (a+ εb)(c+ εd) = ac+ ε(ad+ bc)

iii. Dual Conjugation: If z = a+ εb then z = a− εb

iv. Division:
a+ εb

c+ εd
=
a

c
+ ε

bc− ad
c2

.

Thus, pure dual numbers (c = 0) have no inverse, so dual numbers do not form a
field.

v. Norm: |a+ εb| =
√

(a+ εb)(a− εb) =
√
a2 = |a|

3 Dual Quaternions

Definition 3. Dual quaternions are quaternions of the form q = qp + εqd where qp and
qd are quaternions representing the primal and dual parts of q, and ε denotes the dual
unit. Equivalently, we can define the dual quaternions as an eight–dimensional vector
space over R with basis (1, i, j,k, ε, εi, εj, εk). The algebra of dual quaternions is denoted
by DH = D⊗H.

Dual quaternions are useful for problems in robot kinematics as they provide a sim-
ple way to represent rotations and translations in 3–dimensional space without requiring
lengthy computations. A rigid transformation in R3 (a rotation and translation) would
typically require separate computations for the rotation and the translation, usually us-
ing quaternions or matrices for the rotation, and addition of vectors for the translation.
Dual quaternions, however, combine the rotation and translation information into a single
object.

The following is a list of operations on dual quaternions.

i. Scalar multiplication: λq = λqp + ελqd, for λ ∈ R.

ii. Addition: p+ q = pp + qp + ε(pd + qd).

iii. Multiplication: pq = ppqp + ε(ppqd + pdqp).

iv. Quaternion Conjugate: q∗ = q∗p + εq∗d.

v. Dual Conjugation: q = qp − εqd

vi. Third type of Conjugate: q∗ = q∗p − εq∗d.

vii. Norm: |q|2 = qq∗.
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3.1 Rotations and Translations

viii. Inverse: q−1 = q∗

|q|2

We can now prove the following.

Theorem 2. Dual quaternions form a non–commutative ring with multiplicative identity.

Proof. Using rule ii above and that quaternions form a ring, we see that dual quaternions
are closed under addition, addition is abelian, and the additive identity is given by 0 =
0 + 0i + 0j + 0k. From rule i, we see that the additive inverse of a dual quaternion q is
−q. Associativity of multiplication follows from the associativity of multiplication of dual
numbers. Distributivity of multiplication over addition follow from rules ii and iii.

3.1 Rotations and Translations

Definition 4. A proper rigid transformation of a Euclidian space is a transformation that
preserves orientation, and the Euclidian notion of the distance between any two points.
The group of proper rigid transformations of Rn is called the special Euclidian group and
is denoted by SE(n).

Theorem 3. Every proper rigid transformation of Rn can be represented by a rotation R,
followed by a transformation t, i.e. v 7→ Rv + t.

In order to generate a rigid transformation of R3 without dual quaternions, we identify
with each rotation quaternion r = cos θ2 + û sin θ

2 a rotation matrix R, and represent
translations by pure quaternions t = t1i + t2j + t3k ∈ Ri +Rj +Rk by v 7→ v + t. Thereby
allowing a general rigid transformation in SE(3), being the composition of a rotation and
translation, to be represented by v 7→ Rv + t. We can, however, use dual quaternions to
represent the general transformation Rv + t in a compact way.

As unit quaternions represent rotation in R3 by conjugation with a vector, v 7→ qvq−1,
unit dual quaternions represent general rigid transformations by conjugation using the
third type of conjugate given above. We identify R3 with Ri + Rj + Rk and represent a
vector v = (v1, v2, v3) ∈ R3 by a pure quaternion v = v1i + v2j + v3k ∈ H, which, in turn,
we can represent via a one–to–one correspondence as a dual quaternion 1 + εv ∈ DH.

Theorem 4. Conjugation of 1 + εv for v ∈ R3 = Ri + Rj + Rk with the third type
of conjugate for dual quaternions by the unit dual quaternion σ = r + ε

2tr, where r =

cos θ2 + û sin θ
2 and t = t1i + t2j + t3k represents the rigid transformation generated by

rotation by θ through the axis defined by û, followed by translation by t.

Proof. We identify the rotation matrix R with the rotation rvr−1 and show that the general
transformation v 7→ Rv + t in SE(3) can be represented by v 7→ σ(1 + εv)σ∗.
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4 The Exponential Map

We first note that for a pure quaternion t, we have that t∗ = −t. We now compute

v 7→ σ(1 + εv)σ∗ = (r +
ε

2
tr)(1 + εv)(r∗ − ε

2
r∗t∗)

= (r +
ε

2
tr + εrv)(r∗ − ε

2
r∗t∗) (ε2 = 0)

= rr∗ + ε(
1

2
trr∗ + rvr∗ − 1

2
rr∗t∗)

= 1 + ε(rvr∗ + t) (t∗ = −t) (2)

which can be identified with the transformation Rv + t.

Remark 2. A dual quaternion p+ εq is a unit dual quaternion if and only if pp∗ = 1 and
pq∗+qp∗ = 0. Thus, the unit dual quaternions form a six–dimensional subset of DH known
as the Study quadric. The Study quadric is explained in more detail in §4.2.1.

Remark 3. For a general unit dual quaternion p + εq, the rotational and translational
information is given by r = p, and t = 2qp∗. Thus, it can be seen from equation (2) that
we can represent a pure rotation by a dual quaternion by setting the dual part to zero, and
a pure translation by setting the real part to unity.

If we were instead to first translate a point v ∈ R3 followed by a rotation, that is
v 7→ R(v + t), we simply modify the above transformation by conjugating by the unit dual
quaternion σ′ = r + ε

2rt, yielding

v 7→ σ′(1 + εv)σ′∗ = 1 + εr(v + t)r∗ ←→ R(v + t).

Thus, any rigid transformation in R3 can be modelled compactly using dual quaternions.

4 The Exponential Map

4.1 Exponential of a Quaternion

We can represent a quaternion q = a+ bi + cj + dk by the matrix

Q =

(
a+ ib c+ id
−c+ id a− ib

)
, (3)

thereby reducing the exponential of a quaternion to the problem of the exponential of a
2× 2 square matrix. We start with the following definition.

Definition 5. The matrix absolute value of a matrix A = (aij) is defined to be

|A| =
√∑

i,j

|aij |2.
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4.1 Exponential of a Quaternion

From this definition comes the following Lemma.

Lemma 5 (Submultiplicative property). For any two square matrices A and B we have
|AB| ≤ |A||B|.

Proof. A proof is given in [1, Page 84].

The submultiplicative property is a useful property of square matrices as it allows us
to prove the absolute convergence of the exponential series.

Proposition 6 (Convergence of the exponential series). If A is a n × n matrix, then the
exponential series

∞∑
k=0

Ak

k!
= In +A+

A2

2
+
A3

3!
+ . . . (4)

converges absolutely, where In is the n× n identity matrix.

Proof. 1 To prove the absolute convergence of equation (4) we must prove the convergence
of the series

∞∑
k=0

∣∣Ak∣∣
k!

= |1|+ |A|+
∣∣A2
∣∣

2
+

∣∣A3
∣∣

3!
+ . . .

By the submultiplicative property we have

∞∑
k=0

∣∣Ak∣∣
k!
≤
∞∑
k=0

|A|k

k!
.

But the latter series is just the series for the real exponential function e|A|, which is conver-
gent. Hence, our series given in equation (4) is absolutely convergent by the comparison
test.

Corollary 6.1. If A is a n× n matrix, then the series
∑∞

k=0
Ak

k! converges.

This leads to the following definitions.

Definition 6 (Matrix exponential). The exponential of an n×n matrix A is given by the
series

eA =

∞∑
k=0

Ak

k!
= In +A+

A

2
+
A3

3!
+ . . .

Definition 7 (Quaternion exponential). The exponential of a general quaternion q =
a + bi + cj + dk is given by the quaternion representation of the matrix exponential of

Q =

(
a+ ib c+ id
−c+ id a− ib

)
.

1This proof follows the proof given in [1, Page 85].
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4 The Exponential Map

Proposition 7. The exponential of a quaternion q = a + bi + cj + dk is equivalent to∑∞
k=0

qk

k! .

In order to prove this, we need the following Lemma.

Lemma 8. We have qn ←→ Qn for all n ∈ N.

Proof. We show this by induction on n.

Base Case: The cases n = 0, 1 are trivial. For n = 2 we have

q2 = a2 − u2 + 2abi + 2acj + 2adk←→
(
a2 − u2 + 2iab 2a(c+ id)

2a(−c+ id) a2 − u2 − 2iab

)
= Q2,

where u =
√
b2 + c2 + d2.

Inductive Step: Assume the hypothesis holds for n = k, we now show that it holds
for n = k + 1. We have qk+1 = qkq ←→ QkQ = Qk+1 by the rules for multiplication of
matrices.

So we now have that qn ←→ Qn for all n ∈ N.

Proof (proposition 7). From Lemma 8 we have qn ←→ Qn for all n ∈ N. Thus, we only

need to show the series
∑∞

k=0
qk

k! converges. We first note that by an inductive argument

on the multiplicative property of the norm of a quaternion we have
∣∣qk∣∣ = |q|k for any

quaternion q. Hence, we find
∞∑
k=0

∣∣qk∣∣
k!

=

∞∑
k=0

|q|k

k!
,

and the latter series is the convergent real exponential function e|q|. Therefore our series
is absolutely convergent by the comparison test.

4.2 Application to Robot Kinematics

One of the fundamental results from the theory of Lie groups is that the exponential func-
tion gives a mapping from the Lie algebra g to its corresponding Lie group G. The mapping
is neither injective nor surjective in general, but is a homeomorphism in a neighbourhood
of the identity [2, Chapter 4, §4]. The possible rigid motions of a robot joint with one
degree of freedom comprise a one–parameter subgroup of SE(3). Those are, the groups of
the form etX where X ∈ se(3) and t is a scalar. Thus, in order to understand the possible
motions of a robot joint with one degree of freedom, we need to study the one–parameter
subgroups of SE(3).
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4.2 Application to Robot Kinematics

4.2.1 SE(3) and the Study Quadric

We saw in section 3.1 that elements of SE(3) can be represented by dual quaternions. The
Lie algebra elements of SE(3) can be represented by pure dual quaternions [3]. That is,
dual quaternions of the form p + εq where p and q have zero real part. This is useful
for robot kinematics as the exponential map can be used to connect a mechanical joint,
represented by a pure dual quaternion, with the possible displacement allowed by the joint
[3]. For example, a revolute joint is represented by a pure dual quaternion p + εq where
p · q = 0 [2]. The exponential of such a dual quaternion is the focus of section 4.2.2.

In section 3.1 we wrote a general element of SE(3) as r + ε
2tr, where r ∈ Spin(3) (that

is, |r| = 1) and t ∈ R3 = Ri + Rj + Rk. We now follow the construction of the Study
quadric given in [2, Chapter 9, §3]. Writing our element of SE(3) as h = h0 + εh1, the
condition that r ∈ Spin(3) becomes hh∗ = 1, giving the equations

h0h
∗
0 = 1, (5)

h0h
∗
1 + h1h

∗
0 = 0. (6)

The dual quaternions satisfying conditions (5) and (6) are elements of the double cover
Spin(3)nR3 of SE(3). To obtain elements of SE(3), we need to identify the dual quaternions
h and −h. This is achieved by identifying the dual quaternion h = h0 + εh1 = (a0 + a1i +
a2j + a3k) + ε(b0 + b1i + b2j + b3k) with a point in PR7 with homogeneous coordinate
(a0 : a1 : a2 : a3 : b0 : b1 : b2 : b3). Because we have projectivised Spin(3) n R3, h and −h
now correspond to the same point in homogeneous coordinates, as required. As a point in
projective space is invariant under scalar multiplication, condition (5) is now redundant,
and we are left with the quadratic relation (6). The six–dimensional quadric described by
this relation is called the Study quadric and plays a fundamental role in robot kinematics.

4.2.2 Exponential of a Dual Quaternion

We now wish to investigate the one–parameter subgroups generated by one degree of free-
dom robot joints. The elements of the one–parameter subgroups are given by et(p+εq) where
t is a scalar and p and q are pure dual quaternions. We start with the following definition.

Definition 8. The exponential of a general dual quaternion p+ εq is given by

∞∑
k=0

(p+ εq)k

k!
. (7)

Proposition 9. The series (7) is convergent.

Proof. We can express a general dual quaternion p+ εq as a quaternion with dual number
coefficients as p + εq = p0 + p1i + p2j + p3k + ε(q0 + q1i + q2j + q3k) = p0 + q0 + (p1 +
εq1)i + (p2 + εq2)j + (p3 + εq3)k. The exponential of a dual quaternion is thus reduced to
the exponential of a quaternion, so, by Proposition 7, the series (7) converges.
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4 The Exponential Map

This allows us to investigate some of the properties of the one–parameter subgroups of
revolute joints.

Theorem 10. If X = p + εq represents a revolute joint, i.e. p · q = 0 where p and
q are pure imaginary quaternions, then the one–parameter subgroup et(p+εq) is given by
cos |tp|+ t sin |tp||tp| (p+ εq) which characterises a straight line through the identity in the Study

quadric for any t ∈ R∗ = R \ {0}.

Before we can prove this, we need the following Lemmas.

Lemma 11. For a non–zero pure imaginary quaternion v = bi + cj + dk we have ev =
cos |v|+ v

|v| sin |v|. If v = 0, we define ev = 1.

Proof. We first note that for a pure quaternion v we have that v2 = −(b2+c2+d2) = −|v|2.
So we can write powers of v as v2 = −|v|2, v3 = −|v|2v, v4 = |v|4, . . . Thereby giving

ev = 1 + v − 1

2!
|v|2 − 1

3!
|v|2v +

1

4!
|v|4 +

1

5!
|v|4v − 1

6!
|v|6 − . . .

= (1− 1

2!
|v|2 +

1

4!
|v|4 − 1

6!
|v|6 + . . . ) +

v

|v|
(|v| − 1

3!
|v|3 +

1

5!
|v|5 + . . . )

= cos |v|+ v

|v|
sin |v|.

Lemma 12. If X = p+ εq represents a revolute joint, i.e. p · q = 0, then

(p+ εq)k =

{
pk if k is even

pk−1(p+ εq) if k is odd.

Proof. We prove this by induction on k.
Base case: (p+εq)1 = p+εq = p0(p+εq). Note that if p ·q = 0, then pq = −p ·q+p×q =
p× q = −q× p = −qp. So multiplication of p and q is anticommutative. Thus, for k = 2
we get (p+ εq)2 = p2 + ε(pq + qp) = p2. Now assume the hypothesis holds for k = n.
Case 1: n is even, so n+ 1 is odd. We have (p+ εq)n+1 = (p+ εq)n(p+ εq) = pn(p+ εq) =
p(n+1)−1(p+ εq), as required.
Case 2: n is odd, so n + 1 is even. We have (p + εq)n+1 = (p + εq)n(p + εq) = pn−1(p +
εq)(p+ εq) = pn−1(p+ εq)2 = pn−1p2 = pn+1, as required.

We can now prove Theorem 10.
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4.2 Application to Robot Kinematics

Proof (Theorem 10). From the definition of the exponential of a dual quaternion and
Lemma 12 we obtain

et(p+εq) =

∞∑
k=0

tk(p+ εq)k

k!

=

∞∑
k=0

(tp)2k

(2k)!
+

∞∑
k=0

t2k+1p2k(p+ εq)

(2k + 1)!

= cosh(tp) + p−1 sinh(tp)(p+ εq).

Using Lemma 11, we can write

cosh(tp) =
etp + e−tp

2
=

1

2

(
cos |tp|+ t sin |tp|

|tp|
p+ cos |tp| − t sin |tp|

|tp|
p

)
= cos |tp|,

and similarly

sinh(tp) =
etp − e−tp

2
=
t sin |tp|
|tp|

p.

Thus,

et(p+εq) = cos |tp|+ t
sin |tp|
|tp|

(p+ εq), (8)

as required.
The condition for et(p+εq) to lie in the Study quadric is given by condition (6). Writing

h0 = cos |tp|+ t sin |tp|
|tp| p and h1 = t sin |tp|

|tp| q, from equation (8) we obtain

h0h
∗
1 + h1h

∗
0 =

(
cos |tp|+ t sin |tp|

|tp|
p

)(
t sin |tp|
|tp|

q

)∗
+

(
t sin |tp|
|tp|

q

)(
cos |tp|+ t sin |tp|

|tp|
p

)∗
=
−t2 sin2 |tp|
|tp|2

(pq + qp) (p∗ = −p and q∗ = −q)

= 0, (pq = −qp)

thereby showing et(p+εq) lies in the Study quadric.
It is shown in [2, Chapter 11, §2] that straight lines through the identity in the Study

quadric have the form α+ βa+ βεc for α, β ∈ R and quaternions a and c. Comparing this
with equation (8) and identifying α = cos |tp|, β = t sin |tp||tp| , a = p, and c = q; we see that

et(p+εq) characterises a straight line through the identity in the Study quadric.

Remark 4. In [4], revolute joints are represented by dual quaternions (t − h) for some
t ∈ PR1 (here we are treating t = (t0 : t1) in homogeneous coordinates as a parameter
t = t0

t1
∈ R) and a pure dual quaternion h which represents rotation by π about the line

represented by h. Then the possible relative configurations of a pair of linkages joined
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5 Bond Theory of Mobile Closed 4R Linkages

by the revolute joint will trace a curve on the Study quadric in PR7. It is noted that the
one–parameter rotation subgroups can be geometrically characterised as lines on the Study
quadric through the identity, which we have independently shown with the one–parameter
subgroups generated by elements of se(3) in Theorem 10.

5 Bond Theory of Mobile Closed 4R Linkages

A mobile closed 4R linkage is a closed chain of four revolute joints that allows relative
motion between the links. It is known that there are exactly three types of mobile 4R
linkages: the Bennett, spherical, and planar four–bar linkages. The Bennett linkage is a
type of mobile over–constrained mechanism defined by the following conditions.

i. Opposite sides of the mechanism have the same length, denoted by a and b.

ii. The oriented angles of the axes of the joints, denoted by ρ and ξ, are equal on opposite
sides but with different sign.

iii. The mechanism must satisfy the relation:

sin ρ

b
=

sin ξ

a
.

This special geometric configuration allows a Bennett linkage to have one degree of freedom,
and hence positive mobility. Each of the links of a spherical linkage are constrained to
rotate about the same fixed point in space, so that the axes of the joints intersect at a
single point. This then ensures that the trajectories of the links lie on concentric spheres,
hence the name spherical linkage. A planar linkage simply has the property that all of its
links move in parallel planes.

This section will give some background knowledge of bond theory before moving on to
computing the bond sets for the 4R linkages given above. We now move away from the
Lie group method used to describe revolute linkages in §4, projectivise DH as an eight–
dimensional vector space to obtain PR7, and work in this setting. This section closely
follows the theory laid out in the paper [4].

As in Remark 4, a general chain of n revolute joints is represented by n pure unit dual
quaternions h1, . . . , hn. The one parameter subgroup parameterised by (ti − hi) geometri-
cally represents a revolute joint where ti ∈ PR1 determines the rotation angle between the
i-th and (i + 1)-th link. The position of the last link relative to the first link is given by
(t1 − h1)(t2 − h2) . . . (tn − hn). For a closed nR chain, this position should be the identity
(represented by a non–zero real number), so we are left with the closure equation

(t1 − h1)(t2 − h2) . . . (tn − hn) ∈ R∗. (9)

This gives the following definition.
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5.1 Bonds

Definition 9. For a closed nR chain, the configuration set K (or configuration curve) is
defined to be K = {(t1, t2, . . . , tn) ∈ (PR1)n | (t1 − h1)(t2 − h2) . . . (tn − hn) ∈ R∗}. The
dimension of the Zariski closure of K is called the mobility of the linkage.

We associate with each revolute joint its axis of rotation. This is represented by the
same dual quaternion hi as the joint up to multiplication by -1. The motion of link j
with respect to link i for i < j is called the coupling curve Ci,j and is given by (ti+1 −
hi+1)(ti+2 − hi+2) . . . (tj − hj).

5.1 Bonds

We now introduce the concept of bonds.

Definition 10 (Bonds). Consider a closed nR linkage (h1, h2, . . . , hn) with configuration
curve K and Zariski closure KC. We define the bond set to be

B = {(t1, t2, . . . , tn) ∈ KC | (t1 − h1)(t2 − h2) . . . (tn − hn) = 0}, (10)

and call β a bond if β ∈ B.

A more rigorous definition of bonds can be found in [4] that allows for singularities
to occur on the configuration curve. This will not be encountered for the 4R linkages we
consider, however, so is not necessary here.

Remark 5. It is shown in Theorem 13 below that every bond has pure imaginary entries.
Thus, it is important to distinguish the basis element i ∈ DH from the complex unit i ∈ C.

Theorem 13. For any bond β = (t1, t2, . . . , tn), there exist indices i, j ∈ {1, 2, . . . , n} such
that t2i + 1 = t2j + 1 = 0.

Proof. 2 Let β = (t1, t2, . . . , tn) be a bond. Then, for any k ∈ {1, . . . , n}, the norm of
(tk − hk) is (tk − hk)(tk − hk)∗ = (tk − hk)(tk + hk) = t2k + 1 as hk is a pure unit dual
quaternion. As β is a bond, we have

n∏
k=1

(tk − hk) = (t1 − h1)(t2 − h2) . . . (tn − hn) = 0. (11)

2This proof follows the proof of Theorem 2 in [4].
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5 Bond Theory of Mobile Closed 4R Linkages

Taking the norm of both sides of this equation we obtain

0 =
n∏
k=1

(tk − hk)

(
n∏
k=1

(tk − hk)

)∗

=
n∏
k=1

(tk − hk)
n∏
k=1

(tn+1−k − hn+1−k)
∗ (conjugation reverses order of multiplication)

=
n∏
k=1

(tk − hk)
n∏
k=1

(tn+1−k + hn+1−k) (hk are pure dual quaternions)

=
n∏
k=1

(t2k + 1).

Hence, we must have that t2i + 1 = 0 for some i ∈ {1, . . . , n}.
Without any loss of generality, we now assume that i is the least such number for

which this condition holds. In order to show that there is j ∈ ({1, . . . , n} \ {i}) such that
t2j + 1 = 0, we multiply equation (11) by (ti−1 + hi−1) . . . (t2 + h2)(t1 + h1) on the left, and
by (tn + hn)(tn−1 + hn−1) . . . (ti+1 + hi+1) on the right, yielding

0 =
i−1∏
k=1

(ti−k + hi−k)
n∏
k=1

(tk − hk)
n−i∏
k=1

(tn+1−k + hn+1−k)

=

(
i−1∏
k=1

(t2k + 1)

)
(ti − hi)

(
n∏

k=i+1

(t2k + 1)

)
.

But ti ∈ C and h is a pure dual quaternion, so (ti−hi) can never vanish. Thus, we conclude
there is some j ∈ ({1, . . . , n} \ {i}) such that t2j + 1 = 0.

We can now make the following definition.

Definition 11. A bond β is called typical if there are exactly two indices i, j ∈ {1, . . . , n}
such that t2i + 1 = t2j + 1 = 0.

5.2 Computing Bond Sets for 4R linkages

In this section we compute the bond sets for the three types of closed 4R linkages us-
ing Mathematica. The source code used to compute the following examples is given in
Appendix B.
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5.2 Computing Bond Sets for 4R linkages

Example 1 (Bennett linkage). Consider the Bennett linkage (h1, h2, h3, h4) with

h1 = i,

h2 = 9εi + j− 9εk,

h3 = −
(

1

3
+ 4ε

)
i−
(

2

3
− 4ε

)
j +

(
2

3
+ 2ε

)
k,

h4 =

(
2

3
+ 5ε

)
i +

(
1

3
+ 4ε

)
j +

(
2

3
− 7ε

)
k.

Let X = (t1 − h1)(t2 − h2)(t3 − h3)(t4 − h4), then, from the closure condition X ∈ R∗, we
can extract eight polynomial equations in t1, t2, t3 and t4 as the real–valued coefficients of
the eight basis elements of the vector space DH.

In order to try and solve this set of polynomial equations, we first compute a Gröbner
basis (explained in Appendix A), and then solve this Gröbner basis to obtain a parame-
terised representation of the configuration curve. For the Bennett linkage above we obtain:

t1 = t− 1, t2 = t, t3 = t− 1, t4 = −t, (12)

where t ∈ PR1. We then substitute this back into X and find

(t− 1− h1)(t− h2)(t− 1− h3)(−t− h4) = −(t2 + 1)(t2 − 2t+ 2). (13)

The bonds are then found by finding the roots of equation (13). They are found to be
t = ±i and t = 1± i. Substituting these values of t back into equation (12) we obtain the
bond set:

B = {(±i, 1± i,±i,−1± i), (−1± i,±i,−1± i,∓i)} .

As it can be seen, each bond in B is a typical bond.

�

We now follow the same procedure for the spherical and planar linkages.

Example 2 (Spherical linkage). Consider the spherical linkage (h1, h2, h3, h4) given by

h1 = i, h2 = j, h3 = k, h4 =
3

5
i +

4

5
j.

As for the Bennett linkage, we solve the Gröbner basis obtained from the eight polynomial
equations derived from X = (t1 − h1)(t2 − h2)(t3 − h3)(t4 − h4) ∈ R∗. The configuration
curve is found to be parameterised by

t1 =
−5t2 + 5 + w

6t
, t2 =

−5t2 − 5 + w

8t
, t3 =

25t2 − 7− 5w

24
,

14



5 Bond Theory of Mobile Closed 4R Linkages

where w = ±
√

25t4 − 14t2 + 25. Substituting this parameterisation into X we obtain

(t1 − h1)(t2 − h2)(t3 − h3)(t4 − h4) =
5(t2 + 1)(125 + 5t2(25t2 − 14± 5w)± 7w)

288t
,

which has roots ±i, −45 ±
3
5 i, and 4

5 ±
3
5 i. The bond set is then computed to be

B =

{(
± i

3
,±i,

1

3
,±i

)
,

(
∓i,−1,±i,

4

5
± 3

5
i

)
,

(
∓i, 1,±i,

−4

5
± 3

5
i

)
, (±3i,±i,−3,∓i)

}
.

As for the Bennett linkage, each bond in B is typical.

�

Example 3 (Planar linkage). We now consider the planar linkage given by

h1 = εi + k, h2 = εj + k, h3 = k, h4 = εi + 2εj + k.

The configuration curve can be parameterised by

t1 =
5− t(t− 2) + w

2(t+ 3)
, t2 =

t2 + 1− w
4(2− t)

, t3 =
t(t− 4) + 1− w

4(t− 1)
, t4 = t,

where w = ±
√
t4 − 8t3 + 2t2 + 56t− 47. This then yields

(t1−h1)(t2−h2)(t3−h3)(t4−h4) =
(t2 + 1)(t5 − 9t4 + t3(18∓ w) + t2(38± 5w)− 5t(19± w)∓ 7w + 31)

8(t3 − 7t+ 6)
,

which has roots ±i and 4± i. The bond set is

B = {(±i,−2± i,∓i, 4∓ i), (±i,∓i,±i,∓i), (2± i,∓i,−1± 2i,±i)} .

As it can be seen, the planar linkage has two non–typical bonds (±i,∓i,±i,∓i).

�

We have demonstrated the existence and computation of bonds. Their significance lies
in the fact that bonds only exist for mechanisms with positive mobility. Thus, they provide
an avenue for understanding and clarifying the so–called paradoxical mechanisms – those
that are unexpectedly mobile, such as the three examples discussed in this section.
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A Gröbner Bases

Appendix A Gröbner Bases

Intuitively, a Gröbner basis for a set of polynomials is a set of polynomials that have
the same common solutions as the original set of polynomials, but are better–suited for
computation. That is, in general, it is much easier to find solutions to the Gröbner basis
than to the original set of polynomials. In order to define a Gröbner basis, we first need
the following definitions.

Definition 12 (Ideals of polynomials). Let k be a field and let k[x1, . . . , xn] be the ring
of polynomials in x1, . . . , xn with coefficients in k. We say a subset I ⊆ k[x1, . . . , xn] is an
ideal of polynomials if it satisfies

i. 0 ∈ I.

ii. If f, g ∈ I, then f + g ∈ I.

iii. If f ∈ I and h ∈ k[x1, . . . , xn], then hf ∈ I.

Definition 13. Let f1, . . . , fk be a finite set of polynomials in k[x1, . . . , xn]. We define the
ideal I generated by f1, . . . , fk to be

I = 〈f1, . . . , fk〉 =

{
k∑
i=1

hifi | h1, . . . , hk ∈ k[x1, . . . , xn]

}
,

and say that f1, . . . , fk is a basis for I.

Definition 14 (Monomial ordering). Let n ≥ 0. Then, a monomial ordering on k[x1, . . . , xn]
is a relation on the set of monomials xα, α ∈ Zn, satisfying:

i. > is a total ordering on Zn.

ii. if α > β and γ ∈ Zn, then α+ γ > β + γ.

iii. Every nonempty subset of Zn has a smallest element under >.

Definition 15. Let f =
∑

α aαx
α be a nonzero polynomial in k[x1, . . . , xn] and let > be

a monomial order. Then

i. The multidegree of f is max(α ∈ Zn | aα 6= 0).

ii. The leading coefficient of f is LC(f) = amultideg(f) ∈ k.

iii. The leading monomial of f is LT(f) = xmultideg(f).

iv. The leading term of f is LT(f) = LC(f) · LM(f).

We can now define a Gröbner basis.
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A Gröbner Bases

Definition 16 (Gröbner basis). Fix a monomial order. Then, a finite subset G =
{g1, . . . , gk} of an ideal I is called a Gröbner basis if

〈LT(g1), . . . ,LT(gk)〉 = 〈LT(I)〉,

where LT(I) is the set of leading terms of elements of I.

From this definition it is not clear whether we can always guarantee that a Gröbner
basis can be computed for a set of polynomials. However, we have the following powerful
theorem.

Theorem 14 (Hilbert basis theorem). For every ideal I ⊆ k[x1, . . . , xn] there is some
g1, . . . , gk ∈ I such that I = 〈g1, . . . , gk〉.

Proof. A proof is given in [5, Page 74].

Corollary 14.1. Fix a monomial ordering. Then every ideal I other than {0} has a
Gröbner basis. Furthermore, any Gröbner basis for an ideal I is indeed a basis for I.

This is extremely useful as we can, in theory, compute a Gröbner basis for any non
trivial ideal. We have not yet given any examples of the type of monomial orderings that
a Gröbner basis would use. Here we present the most common type of monomial ordering
used for computer algebra systems: lexicographic ordering.

Definition 17 (Lexicographic order). Let α = (α1, . . . , αn) and β = (β1, . . . , βn) ∈ Zn for
some n ≥ 0. We say α >lex β if the left most nonzero entry in vector notation of α− β is
positive. We write xα >lex x

β if α >lex β.

Proposition 15. The lex ordering on Zn is a monomial ordering.

Proof. A proof is given in [5, Page 55].

The Mathematica function GroebnerBasis used in Appendix B uses a lexicographic
order to compute a Gröbner basis from a set of polynomials using Buchberger’s algorithm.
A detailed explanation of Buchberger’s algorithm is given in [5, Chapter 2, §7].
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B Mathematica Code for 4R Linkages

Appendix B Mathematica Code for 4R Linkages

B.1 Bennet Linkage

In[1]:= (* Defining the dual unit *)

εεε/:Power[εεε,n_]:=0/; n≥≥≥2

(* Loading the Quaternion package *)

Needs["Quaternions‘"]

(* Shorthand for "Quaternion" *)

Q[a_,b_,c_,d_]:=Quaternion[a,b,c,d]

(* Defining the Bennett dual quaternions *)

h1=Q[0,1,0,0];

h2=Q[0,9εεε,1,-9εεε];

h3=Q[0,
-1

3
-4εεε,

-2

3
+ 4εεε,

2

3
+2εεε ];

h4=Q[0,
2

3
+5εεε,

1

3
+4 εεε,

2

3
-7εεε ];

(* Transforming scalars t1, t2, t3, and t4 into quaternions *)

t1Q=Q[t1,0,0,0];

t2Q=Q[t2,0,0,0];

t3Q=Q[t3,0,0,0];

t4Q=Q[t4,0,0,0];

(* Functions for extracting the 8 real coefficients of a dual quaternion *)

ScalarPart[Q[a_,b_,c_,d_]]:=Simplify[a]

DualPart[x_]:=Expand[

Simplify[

Coefficient[

Simplify[x],εεε,1]
]

]

RealPart[x_]:=Expand[

Simplify[

Simplify[x]-Coefficient[Simplify[x],εεε,1]* εεε
]

]
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B Mathematica Code for 4R Linkages

QtoList[Q[a_,b_,c_,d_]]:={a,b,c,d}

RealVec[x_]:=QtoList[RealPart/@x]

DualVec[x_]:=QtoList[DualPart/@x]

(* Quaternion obtained from the closure equation *)

X=Simplify[(t1Q-h1)**(t2Q-h2)**(t3Q-h3)**(t4Q-h4)];

(* Groebner basis for the polynomials obtained from X *)

GBasis=GroebnerBasis[

Flatten[

{u*RealVec[X][[1]]-1,RealVec[X][[2;;4]],DualVec[X]}
],

{u,t1,t2,t3,t4}
];

(* Function that extracts the polynomials that do not contain u from the

Groebner basis *)
uDelete[x_]:=If[

ContainsAny[{Coefficient[x,u,1]},{0}]==True,x,Nothing
]

SetAttributes[uDelete,Listable]

(* Set of polynomials that do not contain u *)

PolySet=uDelete[GBasis];

"Parameterisation of configuration curve:"

tvals=Solve[

Table[

PolySet[[n]]==0,{n,1,Length[PolySet]}
],

{t1,t2,t3,t4}, MaxExtraConditions→→→1

]//Flatten

(* Parameterised representation of the configuration curve *)

ConfigCurve=ScalarPart[

Simplify[X/.tvals]/.t4→→→-t

];

20



B Mathematica Code for 4R Linkages

"Configuration curve:"

Factor[ConfigCurve]

(* Complex roots of the configuration curve *)

"Roots of Configuration Curve:"

Bonds=Solve[ConfigCurve==0]

(* The bond set *)

"Bond set:"

TableForm[

BondSet={t1,t2,t3,t4}/.tvals/.t4→→→-t/.Bonds,

TableDepth→→→1]

Out[1]= Parameterisation of configuration curve:

Out[2]= {t1→-1-t4,t2→-t4,t3→-1-t4}

Out[3]= Configuration curve:

Out[4]= -(1+t2) (2-2 t+t2)

Out[5]= Roots of Configuration Curve:

Out[6]= {{t→-i},{t→i},{t→1-i},{t→1+i}}

Out[7]= Bond set:

Out[8]= {-1-i,-i,-1-i,i}
{-1+i,i,-1+i,-i}
{-i,1-i,-i,-1+i}
{i,1+i,i,-1-i}

B.2 Spherical Linkage

In[1]:= εεε/:Power[εεε,n_]:= 0/;n≥≥≥2

Needs["Quaternions‘"]

Q[a_,b_,c_,d_]:=Quaternion[a,b,c,d]

t1Q=Q[t1,0,0,0];

t2Q=Q[t2,0,0,0];
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t3Q=Q[t3,0,0,0];

t4Q=Q[t4,0,0,0];

h1=Q[0,1,0,0];

h2=Q[0,0,1,0];

h3=Q[0,0,0,1];

h4=Q[0,3/5,4/5,0];

ScalarPart[Q[a_,b_,c_,d_]]:=Simplify[a]

SetAttributes[ScalarPart,Listable]

DualPart[x_]:=Expand[

Simplify[

Coefficient[Simplify[x],εεε,1]
]

]

RealPart[x_]:=Expand[

Simplify[

Simplify[x]-Coefficient[Simplify[x],εεε,1]*εεε
]

]

QtoList[Q[a_,b_,c_,d_]]:={a,b,c,d}

RealVec[x_]:=QtoList[RealPart/@x]

DualVec[x_]:=QtoList[DualPart/@x]

X=Simplify[(t1Q-h1)**(t2Q-h2)**(t3Q-h3)**(t4Q-h4)];

GBasis=GroebnerBasis[

Flatten[

{u*RealVec[X][[1]]-1,RealVec[X][[2;;4]],DualVec[X]}
],

{u,t1,t2,t3,t4}
];

uDelete[x_]:=If[

ContainsAny[

{Coefficient[x,u,1]},{0}]==True,
x,Nothing]
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SetAttributes[uDelete,Listable]

PolySet=uDelete[GBasis];

tvals=ToRules[

Reduce[

Table[

PolySet[[n]]==0,{n,1,Length[PolySet]}],
Backsubstitution→→→True]/.t4→→→t

]//List//FullSimplify;

"Parameterisation of configuration curve:"

tvals/.Sqrt[25t^4-14t^2+25]→→→w

ConfigCurves=ScalarPart[

FullSimplify[

X/.tvals]

]/.t4→→→t;

"Configuration curves:"

ConfigCurves/.Sqrt[25t^4-14t^2+25]→→→w

"Bonds:"

Bonds=Flatten[DeleteDuplicates[Table[

Solve[ConfigCurves[[i]]==0],

{i,1,Length[ConfigCurves]}]],1]

"Bond set:"

BondSet=TableForm[

DeleteDuplicates[Flatten[{t1,t2,t3,t4}/.tvals/. t4→→→t/.Bonds,1]//Sort],

TableDepth→→→1]

Out[1]= Parameterisation of configuration curve:

Out[2]= {{t3 → 1

24
(-7+25 t2-5 w),t2 →-5-5 t2+w

8 t
,t1 →5-5 t2+w

6 t
},

{t3 → 1

24
(-7+25 t2+5 w),t2→-

5+5 t2+w

8t
,t1→-

-5+5 t2+w

6 t
}}

Out[3]= Configuration curves:
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Out[4]= {5 (1+t2) (125+125 t4+7 w-5 t2 (14+5 w))

288 t
,

5 (1+t2) (125-7 w+5 t2(-14+25 t2+5 w))

288 t
}

Out[5]= Bonds:

Out[6]= {{t→-
4

5
-
3i

5
}, {t→-

4

5
+
3i

5
}, {t→-i},{t→i}, {t→4

5
-
3i

5
}, {t→4

5
+
3 i

5
}}

Out[7]= Bond Set:

Out[8]= {-i
3
, i,

1

3
, i}, {i

3
,-i,

1

3
,-i}

{-i,-1,i,4
5
+
3 i

5
}, {-i,1,-i,-4

5
+
3 i

5
}

{i,-1,-i,4
5
-
3 i

5
}, {i,1,i,-4

5
-
3 i

5
}

{-3 i,-i,-3,i}, {3 i,i,-3,-i}

B.3 Planar Linkage

In[1]:= εεε/:Power[εεε,n_]:= 0/;n≥≥≥2

Needs["Quaternions‘"]

Q[a_,b_,c_,d_]:=Quaternion[a,b,c,d]

t1Q=Q[t1,0,0,0];

t2Q=Q[t2,0,0,0];

t3Q=Q[t3,0,0,0];

t4Q=Q[t4,0,0,0];

h1=Q[0,εεε,0,1];
h2=Q[0,0,εεε,1];
h3=Q[0,0,0,1];

h4=Q[0,εεε,2εεε,1];

QtoList[Q[a_,b_,c_,d_]]:={a,b,c,d}

ScalarPart[Q[a_,b_,c_,d_]]:=Simplify[a]

SetAttributes[ScalarPart,Listable]
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DualPart[x_]:=Expand[

Simplify[

Coefficient[Simplify[x],εεε,1]
]

]

RealPart[x_]:=Expand[

Simplify[

Simplify[x]-Coefficient[Simplify[x],εεε,1]*εεε
]

]

RealVec[x_]:=QtoList[RealPart/@x]

DualVec[x_]:=QtoList[DualPart/@x]

X=Simplify[(t1Q-h1)**(t2Q-h2)**(t3Q-h3)**(t4Q-h4)];

GBasis=GroebnerBasis[

Flatten[

{u*RealVec[X][[1]]-1,RealVec[X][[2;;4]],DualVec[X]}
],

{u,t1,t2,t3,t4}
];

uDelete[x_]:=If[

ContainsAny[

{Coefficient[x,u,1]},{0}]==True,
x,Nothing]

SetAttributes[uDelete,Listable]

PolySet=uDelete[GBasis];

tvals=ToRules[

Reduce[

Table[

PolySet[[n]]==0,{n,1,Length[PolySet]}],
Backsubstitution→→→True]/.t4→→→t

]//List//Simplify;

tvals[[1;;2]]=Nothing;
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"Parameterisation of configuration curve:"

FullSimplify[tvals]/.Sqrt[-47+t (56+t (2+(-8+t) t))]→→→w

ConfigCurves=ScalarPart[

FullSimplify[

X/.tvals]

]/.t4→→→t;

"Parameterisation of closure equation:"

ConfigCurves/.Sqrt[-47+t (56+t (2+(-8+t) t))]→→→w

"Solutions to closure equation:"

Solutions=DeleteDuplicates[

Flatten[

Table[

Solve[ConfigCurves[[i]]==0],

{i,1,Length[ConfigCurves]}],
1]

]

"Bond set:"

BondSet=

TableForm[

Flatten[

{t1,t2,t3,t4}/.tvals/.t4→→→t/.Solutions,

1]//Sort,

TableDepth→→→1]

]

Out[1]= Parameterisation of configuration curve:

Out[2]= {{t3 → 1+(-4+t)t-w

4(-1+t)
, t2 → -1-t2+w

4(-2+t)
, t1 → 5-(-2+t)t+w

2(3+t)
},

{t3 → 1+(-4+t)t+w

4(-1+t)
, t2 → 1+t2+w

8-4t
, t1→ -

-5+(-2+t)t+w

2 (3+t)
}}

Out[3]= Parameterisation of closure equation:

Out[4]= {(1+t
2)(31-7w+t(-5(19+w)+t(38+t(18+(-9+t)t-w)+5w)))

8(6-7t+t3)
,

(1+t2)(31+7w+t(5 (-19+w)+t(38-5w+t(18+(-9+t)t+w))))

8 6-7t+t3)
}
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Out[5]= Solutions to closure equation:

Out[6]= {{t→-i},{t→i},{t→4-i},{t→4+i}}

Out[7]= Bond set:

Out[8]= {-2
5
-
i

5
,-2-i,

1

5
+
2i

5
,4-i}, {-2

5
+
i

5
,-2+i,

1

5
-
2i

5
,4+i}

{-i,-2-i,i,4+i}, {-i,i,-i,i}
{i,-2+i,-i,4-i}, {i,-i,i,-i}
{2-i,i,-1-2 i,-i}, {2+i,-i,-1+2 i,i}
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